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Chapter 1

Introduction

We want to study the solution set V (f1, . . . , fs) of a system of equations

f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

where the fi are polynomials.

The �rst case to consider would be n = s = 1, that is, we have a
single polynomial

f = am · xm + am−1 · xm−1 + . . .+ a1 · x+ a0

and we are looking for the roots of that polynomial. In theory, it is not
too hard to deal with. There are at most n roots, and if the base �eld
is algebraically closed like C, then there are exactly n roots counted
with the appropriate multiplicity. However, it is very hard in practice
to �nd any of the roots.
The second case to consider would have n and s arbitrary, but the
polynomials are all linear, i.e. they are of the form

f = ai1 · x1 + . . .+ ain · xn + bi.

Then the solution set is an afine vector space.

Tropical geometry is rather a new area of mathematics. The name
"Tropical" comes from the country of origin of the Brazilian mathe-
matician Imre Simon. It is similar to Algebraic Geometry. To be more
precise let us see some tools in both area:
In algebraic geometry we consider polynomials over the �elds where +
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and · are the algebraic operations. This means that all the coe�cients
and the exponents of the polynomial are in a �eld. The common zeros
of a �nite number of polynomials de�nes an a�ne variety.

In tropical geometry, instead of working over a �eld we work over a
semiring in which

⊕
and

⊙
are tropical operations. In fact we �rst

consider a polynomial de�ned as in algebraic geometry then we tropi-
calize it and we get a tropical polynomial de�ned in a semiring.

In Chapter 3, we introduce tropicalization of polynomials. We are
especially interested in the hypersurfaces which means s = 1 above.
We examine tropicalization of polynomials and consider the non-linear
locus of the tropical polynomials. Which gives us polyhedral complex.
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Chapter 2

Preliminaries

A semiring is an algebraic structure consisting of a set together with
two binary operations addition and multiplication.A set S is called a
semiring if it satis�es the conditions:
(i) S is closed, associative and commutative under addition and multi-
plication,
(ii Multiplication is distributive over the addition,
(iii) There exists neutral element for both operations addition and
multiplication.

Example 1 Let us show that Z+ is a semiring. Let a, b, c ∈ Z.
(i) Closure:

a+ b ∈ Z
a.b ∈ Z

(ii) Associativity:

(a+ b) + c = a+ (b+ c)
(a.b).c = a.(b.c)

(iii) Commutativity:

a+ b = b+ a
a.b = b.a

(iv) Neutral Element:

a+ 0 = 0 + a = a
a.1 = 1.a = a

(v) Distrubutivity:

a.(b+ c) = (a.b) + (a.c)
(a+ b).c = (a.c) + (b.c)
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(vi) Additive Inverse:

For all positive integer a, there exists b ∈ Z+ such that

a+ b = b+ a = o.
By the equation we get b = −a. This contradicts Z+

If, in addition a semiring satis�es the requirement that each element
must have an additive inverse it is called a ring.

Let us see that R is a ring. Let a, b, c ∈ R.

(i) Closure:

a+ b ∈ R
a.b ∈ R

(ii) Associativity:

(a+ b) + c = a+ (b+ c)
(a.b).c = a.(b.c)

(iii) Commutativity:

a+ b = b+ a
a.b = b.a

(iv) Neutral Element:

a+ 0 = 0 + a = a
a.1 = 1.a = a

(v) Distributivity:

a.(b+ c) = (a.b) + (a.c)
(a+ b).c = (a.c) + (b.c)

(vi) Additive Inverse:

∀a ∈ R,∃b ∈ R s.t. a+ b = b+ a = o
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2.1 Algebraic Geometry

De�nition 2.1.1 A monomial in x1, x2, . . . , xn is a product of the

form

xα1
1 x

α2
2 . . . xαn

n

where the exponents α1, . . . , αn are all nonnegative integers.

De�nition 2.1.2 Consider the polynomial ring k[x1, . . . , xn]. Let f1, f2, . . . , fs
be polynomials in k[x1, . . . xn]. An ideal I =< f1, . . . , fs > in k[x1, . . . , xn]
is of the form

I =< f1, . . . , fs >= {
s∑
i=1

hifi |h1, . . . , hs ∈ k[x1, . . . , xn]}

The polynomials f1, . . . , fs are called generators of the ideal.

De�nition 2.1.3 Let k be a �eld and let f1, . . . , fs be polynomials in

k[x1, . . . , xn]. Then we set

V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn|fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}

.

V (f1, . . . , fs) is called a�ne variety de�ned by f1, . . . , fs.

If s = 1, V (f)is called an hypersurface.
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Chapter 3

Introduction to Tropical

Geometry

Let S be a semiring with the operations
⊕

and
⊙

de�ned as

x
⊕

y = min(x,y)

x
⊙

y = x+y

Example 2 a) 3
⊕

5 = min(3, 5) = 3

b) 3
⊙

5 = 3 + 5 = 8

The operations
⊕

and
⊙

are called tropical addition and tropical
multiplication respectively. We have the following tables:⊕

1 2 3 4 5
⊙

1 2 3 4 5

1 1 1 1 1 1 1 2 3 4 5 6

2 1 2 2 2 2 2 3 4 5 6 7

3 1 2 3 3 3 3 4 5 6 7 8

4 1 2 3 4 4 4 5 6 7 8 9

5 1 2 3 4 5 5 6 7 8 9 10
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Example 3 Let us see that (R ∪ {∞},
⊕
,
⊙

) is a tropical semiring.

We need to show that R∪{∞} satis�es the properties of a semiring

under tropical operations
⊙

and
⊕

:

Let x, y, z ∈ R ∪ {∞}

(i) Associativity:

x
⊕

(y
⊕

z) = min(x,min(y, z)) = min(x, y) or min(x, z)

= min(x, y, z)

= min(min(x, y), z)

= (x
⊕

y)
⊕

z

=⇒ x
⊕

(y
⊕

z) = (x
⊕

y)
⊕

z

x
⊙

(y
⊙

z) = x+ (y + z)

= (x+ y) + z by the associativity of (Rn,+, ·)

= (x
⊙

y)
⊙

z

=⇒ x
⊙

(y
⊙

z) = (x
⊙

y)
⊙

z

(ii) Commutativity:

x
⊕

y = min(x, y)

= min(y, x)

= y
⊕

x

=⇒ x
⊕

y=y
⊕

x

x
⊙

y = x+ y

= y + x by the additivity in (Rn,+, ·)

= y
⊙

x

=⇒ x
⊙

y=y
⊙

x
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(iii) Distributivity:

x
⊙

(y
⊕

z) = x+min(y, z)

= min(x+ y, x+ z)

= (x
⊙

y)
⊕

(x
⊙

z)

=⇒ x
⊙

(y
⊕

z) = (x
⊙

y)
⊕

(x
⊙

z)

(iv) Neutral element:

Let y be neutral element for tropical addition. Then tropical addition
of y and arbitrary real number gives us the following equation:

x
⊕

y = min(x, y) = x

This is true for all x in R ∪ {∞}. Since x can be chosen su�ciently
big, y must be equal to ∞.

Let e be neutral element for tropical multiplication. Then we have:

x
⊙

e = x+ e

Tropical multiplication behaves as our usual addition. Therefore
neutral element e is the zero element of R.

Remark 3.0.4 In usual algebraic operations, the division operation is

the inverse to the multiplication. But the tropical division is de�ned:

x� y = x− y

Example 4 8� 5 = 8− 5 = 3

Remark 3.0.5 There is no subtraction operation under tropical semir-

ings:

Let us consider x as 5 minus 2. This will give the equation 2
⊕

x = 5
which is impossible under tropical addition de�ned above.
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Matrix Multiplication

Let (u1, u2, ....., un) and (v1, v2, ...., vn) be two vectors in Rn ∪ {∞}.
We calculate tropical multiplication of a row vector and a column vec-
tor as follows

(u1, u2, ....., un)
⊙

(v1, v1, ...., vn)T = (u1
⊙

v1
⊕

u2
⊙

v2
⊕

.....
⊕

un
⊙

vn)

= (u1 + v1
⊕

u2 + v2
⊕

...un + vn)

= min(u1 + v1, ..., un + vn)

Example 5 Let (2,−1, 3) and (−2,−3, 5)T be a row and column vec-

tors. Then tropical multiplication of these two vectors is

(2,−1, 3)
⊙

(−2,−3, 5)T = (2
⊙
−2
⊕
−1
⊙
−3
⊕

3
⊙

5)

= (0
⊕
−4
⊕

8)

= max(0,−4, 8) = −4

Example 6 Let us examine tropical multiplication of two matrices of

size 2 x 2.

(
1 0
2 3

)⊙ (
2 1
4 3

)
=

(
min(1 + 2, 0 + 4) min(1 + 1, 0 + 3)
min(2 + 2, 3 + 4) min(2 + 1, 3 + 3)

)

(
1 0
2 3

) ⊙ (
2 1
4 3

)
=

(
3 2
4 3

)
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Tropical Factorization

Example 7 Let f be a polynomial such that

f(x) = x2
⊕

1
⊙

x
⊕

4 = min(2x, x+ 1, 4)

. Deduced factorization of f(x):

(x
⊕

1)
⊙

(x
⊕

3) = (x
⊙

x)
⊕

(x
⊙

3)
⊕

(1
⊙

x)
⊕

(1
⊙

3)

= 2x
⊕

x+ 3
⊕

x+ 1
⊕

4

Thus f(x) = min(2x, x+ 1, 4).
We obtain the same solution by two di�erent polynomials.
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3.1 Tropicalization

De�nition 3.1.1 Let x = (x1, . . . , xn) be a variable in Rn and let

α1, . . . , αn be variables in the ring k[x1, . . . , xn].
A tropical monomial is

α1x1 + α2x2 + . . .+ αnxn

It is also called the tropicalization of the monomial xα1
1 . . . xαn

n .

Example 8 Let us consider monomial x31x2x
2
3. Tropicalization of this

monomial is the linear function

x31x2x
2
3 = x1

⊙
x1
⊙

x1
⊙

x2
⊙

x3
⊙

x3

= x1 + x1 + x1 + x2 + x3 + x3

= 3x1 + x2 + 2x3

Remark 3.1.2 A tropical monomial represents a function from Rn to

R which sends (xα1
1 . . . xαn

n ) to α1x1 + . . .+ αnxn.

Let trop(f) : Rn −→ R be a polynomial. trop(f) is de�ned as a linear
combination of tropical monomials, which is of the form,

trop(f) =
⊕
(i,j)

cij
⊙

xi
⊙

yj

where cij's are the real numbers.

Let a1, a2, . . . be real numbers and let α(1), α(2), . . . , α(n) be variables
in k[x1, . . . , xn].
Consider polynomial f(x1, . . . , xn) : Rn −→ R

f(x1, . . . , xn) = a1x
α
(1)
1

1 x
α
(1)
2

2 . . . xα
(1)
n
n +a2x

α
(2)
1

1 x
α
(2)
2

2 . . . xα
(2)
n
n +. . .+anx

α
(n)
1

1 x
α
(n)
2

2 . . . xα
(n)
n
n

Then tropicalization of this polynomial is

trop(f) = min(a1 +α
(1)
1 x1 + . . .+α

(1)
n xn, . . . , an+α

(n)
1 x1 + . . .+α

(n)
n xn).

Theorem 3.1.3 Let trop(f) : Rn −→ R be a tropical polynomial.

Then trop(f) satis�es three properties:

(i) trop(f) is continuous

(ii) trop(f) is piecewise-linear

(iii) trop(f) is concave
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Example 9 Let f : R −→ R be a polynomial. For all x ∈ R,
f(x) = 3x2 + 2x3. Then tropicalization of f(x) is:

trop(f) = min(2x+ 3, 3x+ 2)

Example 10 Let g : R2 −→ R be a polynomial with g(x, y) = 4x2 +
2y3 + 3. The tropicalization of g(x, y) is

trop(g) = min(2x+ 4, 3y + 2, 3)

Remark 3.1.4 Tropical addition can be also de�ned as the maximum

of two variables, as follows:

x
⊕

y = max(x, y)

Example 11 8
⊕

3 = max(8, 3) = 8

De�nition 3.1.5 Let trop(f) : Rn −→ R be a tropical polynomial.

The hypersurface de�ned by trop(f) is the set of all points (x1, . . . , xn)
in Rn at which the minimum is attained at least twice.

What are the roots of trop(f)?

Let us consider the roots of x3
⊕

2x2
⊕

6x
⊕

11. Then, trop(f) =
min(3x, 2x+ 2, x+ 6, 11).
We have three inequalities:

(i) 3x = 2x+ 2 ≤ x+ 6 ≤ 11. This gives us x = 2.
(ii)x+ 6 = 2x+ 2 ≤ 11 ≤ 3x. By this inequality we get x = 4.

(iii)x+ 6 = 11 ≤ 2x+ 2 ≤ 3x. Then we have x = 5

Then the roots of trop(f): x = 2, x = −4 adn x = 5. According to
roots we get:

for x = 2 trop(f) = min(6, 6, 8, 11)

for x = 4 trop(f) = min(12, 10, 10, 11).

for x = 5 trop(f) = min(15, 12, 11, 11).
The minimum is attained at least twice.
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3.2 Graph of trop(f)

Given a tropical polynomial f(x, y) its curve T(f) is the set of points
(x, y) ∈ R2 where the minimum is attained twice. The graph of trop(f)
includes all points x = (x1, . . . , xn) in Rn with the property that f is
not linear at x.

Proposition 3.2.1 x ∈ R lies in graph of trop(f) if and only if trop(f)
is not linear at x.

Lines: f(x, y) = a
⊙

x
⊕

b
⊙

y
⊕

c

= max(a+ x, b+ y, c)

Fact 1 Any two points span a unique line.
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Fact 2 Any two lines meet in a unique point.

Examples of Tropical Lines To draw graph of a tropical polynomial,
we can take "min" as well as "max". In our �rst example belove we
treat these two cases:

Let f : R2 −→ R be a polynomial.
(x, y) 7−→ x+ y + 1

Tropicalization of this polynomial will be

(i)trop(f) = max(x, y, 1).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

(1) x = y ≥ 1 This gives the locus where x = y, x ≥ 1 and y ≥ 1
(2) y = 1 ≥ x This gives the locus where y = 1, y ≥ x and 1 ≥ x
(3) x = 1 ≥ y This gives the locus where x = 1, x ≥ y and 1 ≥ y
The intersection of the lines x = y,x = 1 and y = 1 is the point (1, 1)
at which trop(f) is not locally linear.
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(ii)trop(f) = min(x, y, 1).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

(1) x = y ≤ 1 This gives the locus where x = y, x ≤ 1 and y ≤ 1
(2) y = 1 ≤ x This gives the locus where y = 1, y ≤ x and 1 ≤ x
(3) x = 1 ≤ y This gives the locus where x = 1, x ≤ y and 1 ≤ y
The intersection of the lines x = y,x = 1 and y = 1 is the point (1, 1)
at which trop(f) is not locally linear.

(iii)trop(f) = max(x, y, 0).
We look at the points where trop(f) is piecewise-linear. We have three
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inequalities:

(1) x = y ≥ 0 This gives the locus where x = y, x ≥ 0 and y ≥ 0
(2) y = 0 ≥ x This gives the locus where y = 0, y ≥ x and 0 ≥ x
(3) x = 0 ≥ y This gives the locus where x = 0, x ≥ y and 0 ≥ y
The intersection of the lines x = y,0 and y = 0 is the point (0, 0) at
which trop(f) is not locally linear.

(iv)trop(f) = min(x, y, 0).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

(1) x = y ≤ 0 This gives the locus where x = y, x ≤ 0 and y ≤ 0
(2) y = 0 ≤ x This gives the locus where y = 0, y ≤ x and 0 ≤ x
(3) x = o ≤ y This gives the locus where x = 0, x ≤ y and 0 ≤ y
The intersection of the lines x = y,x = 0 and y = 0 is the point (0, 0)
at which trop(f) is not locally linear.
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Example 12 Let f : R2 −→ R be a polynomial.

(x, y) 7−→ x2 + y + 3
trop(f) = min(2x, y, 3) is the tropicalization of this polynomial. We

have:

(1) 2x = y ≤ 3 This gives the locus where 2x = y, 2x ≤ 3 and y ≤ 3
(2) 2x = 3 ≤ y This gives the locus where 2x = 3, 2x ≤ y and 3 ≤ y
(3) y = 3 ≤ 2x This gives the locus where y = 3, y ≤ 2x and 3 ≤ 2x

The intersection of the lines 2x = y, x = 3/2 and y = 3 is the point

(3/2, 3).
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Example 13 Let us see tropical hypersurfaces of polynomial f(x, y) =
2x3 + y2 + 5.
Tropicalization of this polynomial is

trop(f) = min(3x+ 2, 2y, 5). Then we have three inequalities:

(1) 3x+ 2 = 2y ≤ 5
(2) 3x+ 2 = 5 ≤ 2y
(3) 2y = 5 ≤ 3x+ 2.
By (1), (2) and (3) we can �nd the point x = (1, 5/2) in R2 where the

function is not locally linear. Then with respect to inequalities we draw

lines of the function.
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Examples of Tropical Curve

Example 14 Let us consider quadratic function f(x, y) = ax2 + bx+
cxy + dy2 + ey + f . The tropicalization of this function gives

trop(f) = max(2x+ a, x+ b, x+ y + c, 2y + d, y + e, f).

(1) 2x+ a = x+ y + c
(2) 2x+ a = 2y + d
(3) 2x+ a = y + e
(4) 2x+ a = f
(5) x+ b = 2y + d
(6) x+ b = y + e....etc.
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Remark 3.2.2 The graph of a quadratic curve has two lines in each

of directions.

3.3 Newton Triangle

Remark 3.3.1 There exist another method to see the graph of a trop-

ical polynomial. The Newton polygon of a polynomial f(x, y) is the

convex hull of half points (i, j) such that xiyj appears in f(x, y).

Example 15 Let d = 2, f = tx2 + xy + ty2 + x+ y + t6.

A1 = {(2, 0), (1, 1), (0, 2), (1, 0), (0, 1), (0, 0)}
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3.4 Why "0"?

Let val : K∗ −→ R be given by val(a) = min(q : αq 6= 0) and
f = Σaxα1

1 ...x
αn
n . Then,

trop(f) = min(val(a1)+α1x1+...+αnxn, val(a2)+α1x1+...+αnxn, ...)

Example 16 Let us consider polynomial f(x, y) = t2x−7(t+ t3)y+ t5

where t is a variable in Laurent Polynomial ring k[x±1
1 , ...x±1

n ]. Like

we de�ned val(t) as the minimum exponent of the variable t, when we

tropicalize polynomial f(x, y) we get

trop(f) = min(x+ 2, y + 1, 5)

So we have three inequalities

(1) x+ 2 = y + 1 ≤ 5 =⇒ x = y − 1
(2) x+ 2 = 5 ≤ y + 1 =⇒ x = −3
(3) y + 1 = 5 ≤ x+ 2 =⇒ y = 4
The intersection of the lines x = y − 1, x = −3 and y = 4 is the point

(3, 4). Tropical hypersurface is
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Example 17 Let us see the tropical hypersurface de�ned by f(x, y) =
tx2+2xy+3ty2+5x+7y−(t2+t5). Tropicalization of this polynomial is

trop(f) = min(2x+ 1, x+ y, 2y + 1, x, y, 2)

Considering tropical hypersurface of a tropical polynomial f(x, y) means,

�nding all the points x = (x, y) where the maximum is attained by two

or more of the linear functions. Therefore we will equate linear func-

tions threesome.

(1) x = y = 2 =⇒ (2, 2)
(2) x = y = x+ y =⇒ (0, 0)
(3) 2x+ 1 = x = x+ y =⇒ (−1, 0)
(4) 2y + 1 = y = x+ y =⇒ (0,−1)

Then the set of all points (x, y) where the function trop(f) is piecewise-
linear is as follows

{(2, 2), (0, 0), (−1, 0), (0,−1)}

Thus starting with this set we will clearly see at which part separated

by the lines in (1), (2), (3) and (4) the maximum is attained.
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