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Chapter 1

Introduction

We want to study the solution set V(fi, ..., fs) of a system of equations

fl(l'l,...,lll'n) =0

fs(xl,...,x.n) = O

where the f; are polynomials.

The first case to consider would be n = s = 1, that is, we have a
single polynomial

f=am ™+ Apmr - 2™ 4 ar T+ ag

and we are looking for the roots of that polynomial. In theory, it is not
too hard to deal with. There are at most n roots, and if the base field
is algebraically closed like C, then there are exactly n roots counted
with the appropriate multiplicity. However, it is very hard in practice
to find any of the roots.

The second case to consider would have n and s arbitrary, but the
polynomials are all linear, ¢.e. they are of the form

f:ail-x1+...+ain-xn+bi.

Then the solution set is an afine vector space.

Tropical geometry is rather a new area of mathematics. The name
"Tropical" comes from the country of origin of the Brazilian mathe-
matician Imre Simon. It is similar to Algebraic Geometry. To be more
precise let us see some tools in both area:

In algebraic geometry we consider polynomials over the fields where +



and - are the algebraic operations. This means that all the coefficients
and the exponents of the polynomial are in a field. The common zeros
of a finite number of polynomials defines an affine variety.

In tropical geometry, instead of working over a field we work over a
semiring in which @ and () are tropical operations. In fact we first
consider a polynomial defined as in algebraic geometry then we tropi-
calize it and we get a tropical polynomial defined in a semiring.

In Chapter 3, we introduce tropicalization of polynomials. We are
especially interested in the hypersurfaces which means s = 1 above.
We examine tropicalization of polynomials and consider the non-linear
locus of the tropical polynomials. Which gives us polyhedral complex.
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Chapter 2

Preliminaries

A semiring is an algebraic structure consisting of a set together with
two binary operations addition and multiplication.A set S is called a
semiring if it satisfies the conditions:

(7) S is closed, associative and commutative under addition and multi-
plication,

(72 Multiplication is distributive over the addition,

(77i) There exists neutral element for both operations addition and
multiplication.

Example 1 Let us show that Z™" is a semiring. Let a,b,c € Z.
(i) Closure:

at+beZ
abeZ

(17) Associativity:

(a+b)+c=a+(b+c)
(a.b).c = a.(b.c)

(1i1) Commutativity:

at+b=b+a
a.b="b.ua

(1v) Neutral Element:

a+0=0+a=a
al=1la=a

(v) Distrubutivity:
a.(b+c) = (a.b) + (a.c)
(a+b).c = (a.c)+ (b.c)
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(vi) Additive Inverse:

For all positive integer a, there exists b € Z such that
a+b=b+a=o.
By the equation we get b = —a. This contradicts 7+

If, in addition a semiring satisfies the requirement that each element
must have an additive inverse it is called a ring.
Let us see that R is a ring. Let a,b,c € R.

() Closure:

a+beR
abeR

(17) Associativity:

(a+b)+c=a+ (b+c)
(a.b).c = a.(b.c)

(771) Commutativity:

at+b=b+a
a.b=b.a

(iv) Neutral Element:

a+0=0+a=a
al=1a=a

(v) Distributivity:

a.(b+c) = (a.b) + (a.c
(a+b).c = (a.c)+ (b.c

(vi) Additive Inverse:

)
)

VaeR,dbeRst. a+b=b+a=o0



2.1 Algebraic Geometry

Definition 2.1.1 A monomial in x1,x9,...,x, s a product of the
form

xPtwy? . aln
where the exponents aq, ..., ay, are all nonnegative integers.

Definition 2.1.2 Consider the polynomial ring k[z1, ..., x,]. Let fi, fo, ..., fs
be polynomials in klxy, ... x,]. Anideal I =< f1,..., fs > inklxy, ..., z,]
15 of the form

I=<fi,....fs>={)_hifilhi,....hs € k[z1,... 2]}
i=1

The polynomials fi, ..., fs are called generators of the ideal.

Definition 2.1.3 Let k be a field and let f1,..., fs be polynomials in
klxy1,...,z,). Then we set

V(fi,--, fs) ={(a1,...,a,) € K"|fi(as,...,a,) =0 for all1 <i < s}

V(f1,-.., fs) is called affine variety defined by fi,..., fs.

If s =1, V(f)is called an hypersurface.



Chapter 3

Introduction to Tropical
Geometry

Let S be a semiring with the operations € and () defined as
z @y = min(z,y)
Oy = z+y
Example 2 a) 35 =min(3,5) =3
b) 3(O5=3+5=38

The operations @ and () are called tropical addition and tropical
multiplication respectively. We have the following tables:

b 1 2 3 45 GO 1 2 3 45
1 1 1 1 11 1 2 3 4 5 6
2 1 2 2 2 2 2 3 4 5 6 7
3 1 2 3 3 3 3 4 5 6 7 8
4 1 2 3 4 4 4 5 6 7 8 9
5 1 2 3 4 5 5 6 7 8 9 10
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Example 3 Let us see that (R U {cc}, @, () is a tropical semiring.

We need to show that RU{oo} satisfies the properties of a semiring
under tropical operations () and @:

Let x,y,z € RU {o0}
(1) Associativity:
r Py P z) = min(xz, min(y, z)) = min(z,y) or min(x, z)
= min(z,y, z)
= min(min(zx,y), z)

=Py D=
= 2PyDz) =Dy D=
tQOQWO2) =2+ (y+2)

= (z +y) + z by the associativity of (R™,+,-)

=0y 0O=

= 1002 =020y 0O=
(ii) Commutativity:
@y = min(z,y)
= min(y, )
=yDu
— r@y-yPDr

tQy=z+y

=y + x by the additivity in (R™,+,-)

=yQOx
= zQy=y Oz

11



(iii) Distributivity:
rQyDz) =z +min(y, 2)
= min(z +y,z + 2)
= @Oy D2
—zQWP2) = @Oy B2

(1v) Neutral element:

Let y be neutral element for tropical addition. Then tropical addition
of y and arbitrary real number gives us the following equation:

x@yzmin(m,y) =z

This is true for all z in R U {co}. Since = can be chosen sufficiently
big, y must be equal to oc.

Let e be neutral element for tropical multiplication. Then we have:

x@ezx—l—e

Tropical multiplication behaves as our usual addition. Therefore
neutral element e is the zero element of R.

Remark 3.0.4 In usual algebraic operations, the division operation is
the inverse to the multiplication. But the tropical division is defined:

rTQYy=—y
Example 4 805=8—-5=3
Remark 3.0.5 There is no subtraction operation under tropical semir-
mgs:

Let us consider x as 5 minus 2. This will give the equation 2@ x =5
which 1s impossible under tropical addition defined above.

12



Matrix Multiplication
Let (uy,ug,.....,u,) and (vq,vs,....,v,) be two vectors in R™ U {oo}.

We calculate tropical multiplication of a row vector and a column vec-
tor as follows

(U1, Uy ooy Up) O (V1,015 s V)T = (11 QUi P s Q2P -oo.. Pty O vy)
= (u1 +v1 Pugs+v2@P...upn +vy)

= min(u; + V1, ..., Uy + V)

Example 5 Let (2,—1,3) and (=2, —3,5)T be a row and column vec-
tors. Then tropical multiplication of these two vectors is

(2,-1,3)O(-2,-3,5)" =202 -10-3P30O5H)
— (0®-1B3)
= maz(0,—4,8) = —4

Example 6 Let us examine tropical multiplication of two matrices of
size 2 x 2.

10 o 2 1\ ([ min(l14+2,0+4) min(l1+1,0+3)
2 3 43 )=\ min2+2,3+4) min(2+1,3+3)
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Tropical Factorization

Example 7 Let f be a polynomial such that

f(z) :xQ@lgx@ll:min@x,x—l—l,él)

. Deduced factorization of f(x):

EDHOEP3) = cQPBEONPIOHPIO?)

:2x@x+3@x+1@4

Thus f(x) = min(2z,z + 1,4).
We obtain the same solution by two different polynomials.

10
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3.1 Tropicalization

Definition 3.1.1 Let x = (z1,...,x,) be a variable in R" and let
aq, ..., ay be variables in the ring klxq,. .., ).
A tropical monomial is

1T + Qexy + ...+ T,

Qn

It is also called the tropicalization of the monomial z§* ... x%

Example 8 Let us consider monomial x3x9x3. Tropicalization of this
monomial is the linear function

S etortoJoIo Lo
=21 +2x1+2x1+ X2+ 23+ 23

= 3$1 —|—£L'2—|—2£L‘3

Remark 3.1.2 A tropical monomial represents a function from R™ to
R which sends (z* ... 2%") to cqywy + ... + 2y,

Let trop(f) : R* — R be a polynomial. trop(f) is defined as a linear
combination of tropical monomials, which is of the form,

trop(f) = @ Cij @ 7' @ y’
)

where ¢;;’s are the real numbers.

Let ay,as, ... be real numbers and let oM, o, ... a™ be variables
in k[zy, ..., 2,
Consider polynomial f(zq,...,z,) :R* — R

M M ( @ @ () ()
flzy,. . zn) = a2t 252 .. .:L‘ﬁ"l) tagxt To? .. .xﬁg)# a7y
Then tropicalization of this polynomial is
trop(f) = min(ay + oMz 4. 4Pz, . an+ Ve +. . +alV ).

Theorem 3.1.3 Let trop(f) : R® — R be a tropical polynomial.
Then trop(f) satisfies three properties:

(1) trop(f) is continuous

(1) trop(f) is piecewise-linear

(1ii) trop(f) is concave

15



Example 9 Let f: R — R be a polynomial. For all x € R,
f(x) = 322 + 223. Then tropicalization of f(x) is:

trop(f) = min(2x + 3,3z + 2)

Example 10 Let g : R? — R be a polynomial with g(z,y) = 42> +
212 + 3. The tropicalization of g(xz,y) is

trop(g) = min(2x + 4,3y + 2,3)

Remark 3.1.4 Tropical addition can be also defined as the maximum
of two variables, as follows:

@By = maz(z,y)
Example 11 8@ 3 = max(8,3) =8

Definition 3.1.5 Let trop(f) : R* — R be a tropical polynomial.
The hypersurface defined by trop(f) is the set of all points (xy, ..., x,)
i R™ at which the minimum is attained atl least twice.

What are the roots of trop(f)?

Let us consider the roots of 23 @222 @ 6x @ 11. Then, trop(f) =
min(3z,2x + 2, x + 6,11).
We have three inequalities:

(1)3x =22 +2 <2+ 6 < 11. This gives us z = 2.
(17) x + 6 = 2z + 2 < 11 < 3z. By this inequality we get © = 4.
(1ii)x +6 = 11 <22+ 2 < 3z. Then we have x =5

Then the roots of trop(f): x = 2, x = —4 adn x = 5. According to
roots we get:

for v =2 trop(f) = min(6,6,8,11)
for x =4 trop(f) =min(12,10,10,11).

forx =5 trop(f) =min(15,12,11,11).
The minimum is attained at least twice.

16



3.2 Graph of trop(f)

Given a tropical polynomial f(x,y) its curve T(f) is the set of points
(z,y) € R? where the minimum is attained twice. The graph of trop(f)
includes all points z = (z1,...,z,) in R” with the property that f is
not linear at x.

Proposition 3.2.1 = € R lies in graph of trop(f) if and only if trop(f)
1 not linear at x.

Lines: f(z,y) =aOQz@PbOyPc

=maz(a+x,b+y,c)

(c-a,cb)

Fact 1 Any two points span a unique line.

S
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Fact 2 Any two lines meet in a unique point.

Examples of Tropical Lines To draw graph of a tropical polynomial,
we can take "min" as well as "max". In our first example belove we
treat these two cases:

Let f:R? — R be a polynomial.
(x,y) —x+y+1
Tropicalization of this polynomial will be

(0)trop(f) = maz(z,y,1).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

y > 1 This gives the locus where z =y, x > 1 and y > 1

1 > x This gives the locus where y =1,y >z and 1 >z

=1 > y This gives the locus where x =1, x > yand 1 > y

The intersection of the lines = y,o = 1 and y = 1 is the point (1,1)
at which trop(f) is not locally linear.

(1) x
(2) y
(3)

18



(1.1)

(id)trop(f) = min(z,y, 1).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

y < 1 This gives the locus where z =y, r < land y <1

1 < x This gives the locus where y =1, y <z and 1 <=z

= 1 <y This gives the locus where z =1, xr <y and 1 <y

The intersection of the lines = y,2 = 1 and y = 1 is the point (1,1)
at which trop(f) is not locally linear.

(1) x
(2) y
(3)

(1.1)

(¢ii)trop(f) = max(x,y,0).
We look at the points where trop(f) is piecewise-linear. We have three

19



inequalities:

y = 0 > z This gives the locus where y =0, y > z and 0 > z
) x = 0 >y This gives the locus where z =0, z >y and 0 > y
The intersection of the lines z = 3,0 and y = 0 is the point (0,0) at
which trop(f) is not locally linear.

) x =y > 0 This gives the locus where z =y, x > 0 and y > 0
)

(0,0)

(iv)trop(f) = min(z,y,0).
We look at the points where trop(f) is piecewise-linear. We have three
inequalities:

(1) x =y < 0 This gives the locus where z =y, z < 0 and y <0

(2) y = 0 < x This gives the locus where y =0, y <z and 0 <z

(3) © = o < y This gives the locus where x =0, x <y and 0 <y

The intersection of the lines = y,2 = 0 and y = 0 is the point (0, 0)
at which trop(f) is not locally linear.

20



(0,0)

Example 12 Let f : R?> — R be a polynomial.

(r,y) —> 2 +y+3
trop(f) = min(2x,y,3) is the tropicalization of this polynomial. We
have:

(1) 2z =y < 3 This gives the locus where 2z =y, 20 <3 and y < 3
(2) 22 =3 <y This gives the locus where 2z = 3, 2x <y and 3 <y
(3) y = 3 < 2z This gives the locus where y =3, y < 2x and 3 < 2z

The intersection of the lines 2x =y, x = 3/2 and y = 3 is the point
(3/2,3).

21



2x

(3/2,3)

Example 13 Let us see tropical hypersurfaces of polynomial f(x,y) =
22° + y? + 5.
Tropicalization of this polynomaial is

trop(f) = min(3x + 2,2y,5). Then we have three inequalities:

(1) 3z +2=2y <5
(2)3z+2=5<2y
(3) 2y =5 < 3z + 2.

By (1),(2) and (3) we can find the point x = (1,5/2) in R? where the
function is not locally linear. Then with respect to inequalities we draw
lines of the function.

22



Ix+2 5

(1,5/2)

2y

Examples of Tropical Curve

Example 14 Let us consider quadratic function f(z,y) = az® + bz +
cxy + dy? + ey + f. The tropicalization of this function gives

trop(f) = max(2z + a,z + b,z +y+c¢,2y +d,y +e, f).

(1)2z4+a=a+y+c
(2)2z+a=2y+d
B)2z+a=y+e

4) 2z +a=f
B5)z+b=2y+d

(6) x+b=y+e..cetc

23



Remark 3.2.2 The graph of a quadratic curve has two lines in each
of directions.

o

3.3 Newton Triangle

Remark 3.3.1 There exist another method to see the graph of a trop-
ical polynomial. The Newton polygon of a polynomial f(x,y) is the
convex hull of half points (i,7) such that x'y’ appears in f(x,y).

Example 15 Let d =2, f = ta? + oy + ty?> + 2 + y + t°.
Ay = {(270)7 (17 1): (072)7 (17())7 (07 1)7 (an)}

24



(02)

(1,1)
(0,1)
(0,0) (1,0) (2,0)
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3.4 Why "0"?

Let val : K* — R be given by val(a) = min(q : o, # 0) and
f=3ax{"...a%". Then,

trop(f) = min(val(ay)+ a1+ ...+ @y, val(ag) + 121+ ...+ Ty, -

Example 16 Let us consider polynomial f(x,y) = t*xz —7(t +t3)y +1°
where t is a variable in Laurent Polynomial ring klzf',..xtY]. Like
we defined val(t) as the minimum exponent of the variable t, when we

tropicalize polynomial f(x,y) we get

trop(f) = min(x 4+ 2,y + 1,5)

So we have three inequalities
(Hz4+2=y+1<5b=ua=y—1
2)z+2=5<y+1l=a2=-3
By+l=56<z+2=—=y=4

The intersection of the lines x =y — 1, x = —3 and y = 4 s the point
(3,4). Tropical hypersurface is

x+2

(3:4)

y+1
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Example 17 Let us see the tropical hypersurface defined by f(x,y) =
tr? 42y +3ty* + 52+ Ty — (t2+t°). Tropicalization of this polynomial is

trop(f) = min(2x + 1,z +y,2y + 1, 2,9, 2)

Considering tropical hypersurface of a tropical polynomial f(x,y) means,
finding all the points x = (z,y) where the mazimum is attained by two
or more of the linear functions. Therefore we will equate linear func-
tions threesome.

(1) =2=(2,2)

(2) = r+y = (0,0)
B)2r+1l=z=0+y = (—1,0)
) 2y+l=y=a0+y = (0,—-1)

Then the set of all points (x,y) where the function trop(f) is piecewise-
linear is as follows

{(2,2),(0,0),(——l,O),(O,——l)}

Thus starting with this set we will clearly see at which part separated
by the lines in (1),(2),(3) and (4) the mazimum is attained.

2
x
2x+1 (2:2)
(-1,0) (0,0) y
X+y
(0,-1)
2y+1
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